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Abstract Consistent with Swerdlow’s mitochondrial cascade hypothesis on the eti-
ology of Alzheimer’s disease, we find the rate of mitochondrial free energy avail-
ability serves as a temperature analog for the ‘spontaneous symmetry breaking’ of
the group structure associated with the error minimization coding scheme of protein
folding, characterizing a phase transition that collapses normal folding to pathological
amyloid production. Generalization of the mitochondrial argument is possible to the
groupoids that are central to the study of analogous, often highly punctuated, ‘ground
state’ failures in more complex biological processes, taking Maturana’s perspective on
the essential role of cognition across the living state. The development is remarkably
straightforward.

Keywords Alzheimer’s disease · Cognitive system · Groupoid · Protein folding ·
Spontaneous symmetry breaking

1 Introduction

Swerdlow’s mitochondrial cascade hypothesis for Alzheimer’s disease (AD) [1] pro-
poses that a person’s genes determine their baseline mitochondrial function and dura-
bility. While both parents influence one’s lifetime AD risk, since mtDNA is maternally
inherited, mothers have a greater impact than fathers. Following [1], it is generally
accepted that mitochondrial function declines with age, and data suggest this drives
a variety of age-associated physiological changes. It is likely cell physiology initially
compensates for and adapts to this change, but eventually a point is reached at which
adequate compensation is no longer possible. The mitochondrial cascade hypothesis
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proposes a person’s genetically determined mitochondrial starting line, in conjunction
with their genetically and environmentally determined rate of mitochondrial decline,
determines the age at which clinical disease ensues.

Here, we will propose a strikingly direct model of this dynamic that generalizes
across much of the phenotype and pathology of aging.

We begin far afield indeed.
A remarkable, but seemingly underappreciated, theoretical development has been

the finding of a close relation between information theory inequalities and a spectrum
of results in the theory of finite groups [2]:

Given two random variables X1 and X2 having Shannon uncertainties H(X1) and
H(X2) defined in the usual manner [3], the information theory chain rule states that,
for the joint uncertainty H(X1, X2),

H(X1) + H(X2) ≥ H(X1, X2) (1)

Similarly, let G be any finite group, and G1, G2 be subgroups of G. Let |G| represent
the order of a group, i.e., the number of elements. Then it is easy to show the intersection
G1 ∩ G2 is also a subgroup, and that

log

[ |G|
|G1|

]
+ log

[ |G|
|G2

]
≥ log

[ |G|
|G1 ∩ G2|

]
(2)

Defining a probability for a ‘random variate’ associated with a group G as Pr{X =
a} = 1/|G| permits construction of a group-characterized information source, noting
that, in general, the joint uncertainty of a set of random variables in not necessarily the
logarithm of a rational number. The surprising ultimate result, however, is that there
is a one-to-one correspondence between unconstrained information inequalities and
group inequalities. Indeed, unconstrained inequalities can be proved by techniques in
group theory, and certain group-theoretic inequalities can be proven by techniques of
information theory.

More generally, the theory of error-correcting codes, usually called algebraic coding
theory [4–6], seeks particular redundancies in message coding over noisy channels that
enable efficient reconstruction of lost or distorted information. The full-bore panoply
of groups, ideals, rings, algebras, and finite fields is brought to bear on the problem
to produce a spectrum of codes having different capabilities and complexities: BCH,
Goppa, Hamming, Linear, Reed-Muller, Reed-Solomon, and so on.

Here, we will provide two examples suggesting that the relations between groups,
groupoids, and a broad spectrum of information-related phenomena of interest in
biology are, similarly, surprisingly intimate.

Group symmetries associated with an error-minimization coding scheme—as
opposed to error correction coding—will dominate a necessary conditions statistical
model of a ‘spontaneous symmetry breaking’ phase transition that drives the collapse
of protein folding to pathological amyloid production, and groupoids emerge as cen-
tral in the study of a similar wide-ranging ‘ground state’ failure of cognitive process,
adopting the Maturana/Varela [7] perspective on the necessity of cognition at every
scale and level of organization of the living state.
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2 Results

2.1 The group structure of biological codes

Tlusty’s [8] analysis of deterministic-but-for-error codes (DBFE) that minimize the
impact of coding errors provides a basis for examining the problem of amyloid protein
misfolding. Tlusty [8] models the emergence of the genetic code as a transition in a
noisy information channel, using a Rate Distortion Theorem methodology. After some
development [9,10] he finds the number of possible amino acids in a coding scheme
is analogous to the well-known topological coloring problem. But while in the coding
problem one desires maximal similarity in the colors of neighboring ‘countries’, in the
coloring problem one must color neighboring countries by different colors. Explicitly,
one uses Heawood’s formula [11] to determine the number of possible ‘amino acids’
given a codon graph designed to minimize errors in coding:

chr(γ ) = I nt

[
1

2
(7 + √

1 + 48γ )

]
(3)

where chr(γ ) is the number of ‘colored’ regions, I nt is the integer value of the enclosed
expression, and γ is the genus of the surface of the underlying code network—basically
the number of ‘holes’ in the code network. In general, γ = 1 − (1/2)(V − E + F),
where V is the number of code network vertices, E the number of network edges, and
F the number of enclosed faces.

The central trick is that one can obtain, for any DBFE code, a basic group theoretic
characterization by noting that the fundamental group (FG) of a closed, orientable
surface of genus γ —in which the code network is taken as embedded—is the quotient
of the free group on the 2γ generators a1, . . . , aγ , b1, . . . , bγ by the normal subgroup
generated by the product of the commutators

a1b1a−1
1 b−1

1 ...aγ bγ a−1
γ b−1

γ (4)

This is a standard construction [12]. For example, the FG of a sphere, an orientable
surface with zero holes, is trivial, having only one element, while that of the torus—a
donut-like orientable surface with one hole—is isomorphic to the direct product of the
integers, written as Z × Z , and so on.

That is, every DBFE error-minimization biological code is associated with a funda-
mental group. The more complex the code, the richer the symmetries of the associated
error network, seen as embedded in a smooth surface of genus γ . Indeed, a weakened
‘groupoid’ version of the argument will prove central to understanding the structure
of cognitive process, as developed in a following section.

Wallace [13] suggests that the overall scheme applies to a ‘protein folding code’
as well. Hecht et al. [14] note that protein α-helices have the underlying ‘code’
101100100110... where 1 indicates a polar and 0 a non-polar amino acid. Protein
β-sheets, by contrast, have the simpler basic ‘code’ 10101010...

Equation (3), most directly, produces the table

123



2666 J Math Chem (2014) 52:2663–2679

γ (# surface holes) chr(γ ) (# error classes)

0 4
1 7
2 8
3 9
4 10
5 11
6, 7 12
8, 9 13

In Tlusty’s scheme, the second column represents the maximal possible number of
product classes that can be reliably produced by error-prone codes having γ holes in
the underlying coding error network.

Normal irregular protein symmetries were first classified by Levitt and Chothia
[15], following a visual study of polypeptide chain topologies in a limited dataset of
globular proteins. Four major classes emerged; all α-helices; all β-sheets; α/β; and
α + β, with the latter two having the obvious meaning.

While this scheme strongly dominates observed irregular protein forms, Chou and
Maggiora [16], using a much larger data set, recognize three more ‘minor’ symme-
try equivalence classes; μ (multi-domain); σ (small protein); and ρ (peptide), and a
possible three more subminor groupings.

We infer that, from Tlusty’s perspective, the normal globular ‘protein folding code
error network’ is, essentially, a large connected ‘sphere’—producing the four dominant
structural modes—but having as many as three more attachment handles, in the Morse
Theory sense [17]. These basic entities then act to produce an almost unlimited set of
functional proteins under normal conditions.

2.2 The amyloid condensation

What happens to the fundamental group of a deterministic-but-for-error code under
conditions that are not normal?

Recent work has correlated aging in general with failure of the mitochondrial
machinery providing metabolic free energy at the cellular level of organization [18,19].
As Lee and Wei [20] argue, aging is a degenerative process that is associated with pro-
gressive accumulation of deleterious changes with time, reduction of physiological
function and increase in the chance of disease and death. Studies reveal a wide spec-
trum of alterations in mitochondria and mitochondrial DNA with aging. Mitochondria
are the main cellular energy sources that generate the cellular energy source ATP
through respiration and oxidative phosphorylation in the inner membrane of mito-
chondria. The respiratory chain of that system is also the primary intracellular source
of reactive oxygen species and free radicals under normal physiological and patho-
logical conditions. In addition, mitochondria play a central role in a great variety of
cellular processes.

Numerous biochemical studies on isolated mitochondria revealed that the electron
transport activities of respiratory enzyme complexes gradually decline with age in the
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brain, skeletal muscle, liver and skin fibroblasts of normal human subjects. Numer-
ous molecular studies demonstrated that somatic mutations in mitochondrial DNA
accumulate with age in a variety of tissues in humans. These age-associated changes
in mitochondria are well correlated with the deteriorative processes of tissues in
aging.

However, although abundant experimental data have been gathered in the past
decade to support the concept that decline in mitochondrial energy metabolism, reac-
tive oxygen species overproduction and accumulation of mitochondrial DNA muta-
tions in tissue cells are important contributors to human aging, the detailed mecha-
nisms by which these biochemical events cause aging have remained to be established.
Here we will examine the implications of mitochondrial deterioration for control of
protein folding, finding, as described above, mechanisms consistent with Swerdlow’s
mitochondrial cascade hypothesis [1].

The prebiotic ‘amyloid world’ of Maury [21], in contrast to the current rich variety
of normal protein structures and functions, is built on a single β-sheet lamination,
and shows, by contrast to the normal protein world, a starkly simple eight-fold steric
zipper [22].

As Goldschmidt et al. [23] put the matter,

We found that [protein segments with high fibrillation propensity] tend to be
buried or twisted into unfavorable conformations for forming beta sheets... For
some proteins a delicate balance between protein folding and misfolding exists
that can be tipped by changes in environment, destabilizing mutations, or even
protein concentration...
In addition to the self-chaperoning effects described above, proteins are also pro-
tected from fibrillation during the process of folding by molecular chaperones...
Our genome-wide analysis revealed that self-complementary segments are found
in almost all proteins, yet not all proteins are amyloids. The implication is that
chaperoning effects have evolved to constrain self-complementary segments
from interaction with each other.

Clearly, effective chaperoning requires considerable metabolic energy, and failure
to provide levels adequate for both maintaining and operating such biochemical trans-
lation machinery would be expected to trigger a canonical ‘code collapse’, most likely
in a highly punctuated manner. The formalism is classic.

The existence of a Tlusty-like error minimization coding structure implies the
existence of some information source using that code-and-translator or code-and-
chaperone channel. As Feynman [24], following Bennett [25] argues, it is possible to
make a small (idealized) machine that transforms information received into work—
free energy. Indeed, Feynman defines information precisely in terms of the free energy
needed to erase it. Representing the intensity of available mitochondrial free energy as
H, we write a pseudoprobability for an information source X j associated with coding
mode j and having source uncertainty Hj as

Pr[Hj ] = exp[−Hj/ωH]∑n
i=1 exp[−Hi/ωH)] (5)
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This leads to constructuion of a ‘free energy’ Morse Function, F , defined in terms
of the rate of available metabolic free energy as

exp[−F/ωH] =
n∑

i=1

exp[−Hi/ωH] (6)

See the Mathematical Appendix for a summary of standard material on Morse
Functions.

The central insight regarding phase transitions in physical systems is that certain
critical phenomena take place in the context of a significant alteration in symmetry,
with one phase being far more symmetric than the other [26,27]. A symmetry is
lost in the transition—spontaneous symmetry breaking. The greatest possible set of
symmetries in a physical system is that of the Hamiltonian describing its energy states.
Usually states accessible at lower temperatures will lack the symmetries available
at higher temperatures, so that the lower temperature phase is less symmetric. The
randomization of higher temperatures ensures that higher symmetry/energy states will
then be accessible to the system. The shift between symmetries is highly punctuated
in the temperature index.

This line of argument suggests the existence of complex forms of highly punctuated
phase transition in code/translator function with changes in demand for, or supply of,
the rate of metabolic free energy needed to run the protein chaperone machine. That
is, applying a spontaneous symmetry breaking argument to F generates topological
transitions involving changes in the fundamental group defined by error code graph
structure as the mitochondrial ‘temperature’ H decreases. As the rate of delivery of
the free energy running the chaperone machines decreases, complex coding schemes
can no longer be sustained, driving a punctuated shift of the fundamental group of the
protein folding code to a degenerate, collapsed amyloid state.

Details of such an information phase transition may also be described using ‘biolog-
ical’ renormalization methods [28] analogous to, but much different from, those used
in the determination of physical phase transition universality classes [29]. Suppose, in
classic manner, it is possible to define a characteristic ‘length’, say l, on the system.
It is then possible to define renormalization symmetries in terms of the ‘clumping’
transformation, so that, for clumps of size L , in an external ‘field’ of strength J (that
can be set to 0 in the limit), one can write, in the usual manner

F[Q(L), J (L)] = f (L)F[Q(1), J (1)]
χ(Q(L), J (L)) = χ(Q(1), J (1))

L
(7)

where χ is a characteristic correlation length and Q is an ‘inverse temperature mea-
sure’, i.e., ∝ 1/ωH.

As described in [28], very many ‘biological’ renormalizations, f (L), are possi-
ble that lead to a number of quite different universality classes for biological phase
transition. Indeed, a ‘universality class tuning’ can be used as a tool for large-scale
regulation of the system. While [29] necessarily uses f (L) ∝ L3 for simple physical

123



J Math Chem (2014) 52:2663–2679 2669

systems, following [28], it is possible to argue that, since F is so closely related to
information measures, it is likely to ‘top out’ at different rates with increasing sys-
tem size, so other forms of f (L) must be explored. Indeed, standard renormalization
calculations for f (L) ∝ Lδ, m log(L) + 1, and exp[m(L − 1)/L] all carry through.

2.3 The groupoid structure of cognition

The approach of the previous sections can be extended to larger-scale machinery
that uses deterministic-but-for-error biological or other codes as relatively simple
components in more complex systems. As many have argued, the living state involves
cognitive processes at every scale of organization [7,30,31]. It not difficult to show that
many forms of cognition are associated with groupoid-characterized dual information
sources.

Atlan and Cohen [32] argue that the essence of cognition involves comparison of
a perceived signal with an internal, learned or inherited picture of the world, and then
choice of one response from a much larger repertoire of possible responses. That is,
cognitive pattern recognition-and-response proceeds by an algorithmic combination of
an incoming external sensory signal with an internal ongoing activity—incorporating
the internalized picture of the world—and triggering an appropriate action based on a
decision that the pattern of sensory activity requires a response.

Incoming ‘sensory’ input is thus mixed in an unspecified but systematic man-
ner with internal ‘ongoing’ activity to create a path of combined signals x =
(a0, a1, . . . , an, . . .). Each ak thus represents some functional composition of the inter-
nal and the external. An application of this perspective to a standard neural network
is given in [28].

This path is fed into some unspecified ‘decision function’, h, generating an output
h(x) that is an element of one of two disjoint sets B0 and B1 of possible system
responses. Let

B0 ≡ {b0, . . . , bk},
B1 ≡ {bk+1, . . . , bm}.

Assume a graded response, supposing that if

h(x) ∈ B0,

the pattern is not recognized, and if

h(x) ∈ B1,

the pattern is recognized, and some action b j , k + 1 ≤ j ≤ m takes place.
Interest focuses on paths x triggering pattern recognition-and-response: given a

fixed initial state a0, examine all possible subsequent paths x beginning with a0 and
leading to the event h(x) ∈ B1. Thus h(a0, . . . , a j ) ∈ B0 for all 0 ≤ j < m, but
h(a0, . . . , am) ∈ B1.
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For each positive integer n, take N (n) as the number of high probability paths of
length n that begin with some particular a0 and lead to the condition h(x) ∈ B1.
Call such paths ‘meaningful’, assuming that N (n) will be considerably less than the
number of all possible paths of length n leading from a0 to the condition h(x) ∈ B1.

Identification of the ‘alphabet’ of the states a j , Bk may depend on the proper system
coarse graining in the sense of symbolic dynamics.

Combining algorithm, the form of the function h, and the details of grammar and
syntax, are all unspecified in this model. The assumption permitting inference on
necessary conditions constrained by the asymptotic limit theorems of information
theory is that the finite limit H ≡ limn→∞ log[N (n)]/n both exists and is independent
of the path x . Again, N (n) is the number of high probability paths of length n.

Call such a pattern recognition-and-response cognitive process ergodic. Not all
cognitive processes are likely to be ergodic, implying that H , if it exists, may be path
dependent, although extension to nearly ergodic processes, in a certain sense, seems
possible [28].

Invoking the Shannon-McMillan Theorem [3], it becomes possible to define an
adiabatically, piecewise stationary, ergodic information source X associated with
stochastic variates X j having joint and conditional probabilities P(a0, . . . , an) and
P(an|a0, . . . , an−1) such that appropriate joint and conditional Shannon uncertainties
satisfy the classic relations

H [X] = lim
n→∞

log[N (n)]
n

= lim
n→∞ H(Xn|X0, . . . , Xn−1)

= lim
n→∞

H(X0, . . . , Xn)

n
(8)

This information source is defined as dual to the underlying ergodic cognitive
process.

‘Adiabatic’ means that, when the information source is properly parameterized,
within continuous ‘pieces’, changes in parameter values take place slowly enough so
that the information source remains as close to stationary and ergodic as needed to
make the fundamental limit theorems work. ‘Stationary’ means that probabilities do
not change in time, and ‘ergodic’ that cross-sectional means converge to long-time
averages. Between pieces, as described above, it is necessary to invoke phase change
formalism, a ‘biological’ renormalization that generalizes Wilson’s [29] approach to
physical phase transition [28].

Again, Shannon uncertainties H(...) are cross-sectional law-of-large-numbers sums
of the form −∑

k Pk log[Pk], where the Pk constitute a probability distribution [3].
We are not, however, constrained in this approach to the Atlan-Cohen model of

cognition that, through the comparison with an internal picture of the world, invokes
representation. The essential inference is that a broad class of cognitive phenomena—
with and without representation—can be associated with a dual information source.
The argument is direct, since cognition inevitably involves choice, choice reduces
uncertainty, and this implies the existence of an information source.
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For cognitive systems, an equivalence class algebra can be now constructed by
choosing different origin points a0, and defining the equivalence of two states am, an

by the existence of high probability meaningful paths connecting them to the same
origin point. Disjoint partition by equivalence class, analogous to orbit equivalence
classes for a dynamical system, defines a groupoid. See the Mathematical Appendix
for a summary of material on groupoids. This is a weak version of a very standard
argument in algebraic toplogy leading to the definition of fundamental and free groups
[12,33]. One might call this construction the fundamental groupoid of the cognitive
process.

The vertices of the resulting network of cognitive dual languages interact to actually
constitute the system of interest. Each vertex then represents a different information
source dual to a cognitive process. This is not a representation of a network of interact-
ing physical systems as such, in the sense of network systems biology. It is an abstract
set of language-analogs dual to the set of cognitive processes of interest, that may
become linked into higher order structures through crosstalk.

As briefly touched upon above, topology has become an object of algebraic
study—algebraic topology—via the fundamental underlying symmetries of geomet-
ric spaces. Rotations, mirror transformations, simple (‘affine’) displacements, and the
like, uniquely characterize topological spaces, and the networks inherent to cognitive
phenomena having dual information sources also have complex underlying symme-
tries. Again, characterization via equivalence classes defines a groupoid, an extension
of the idea of a symmetry group, as summarized by [34,35]. Linkages across this set of
languages occur via the groupoid generalization of Landau’s spontaneous symmetry
breaking arguments used above. As above, we use a standard approach to constructing
a Morse Function parameterized in the rate of available metabolic free energy.

With each subgroupoid Gi of the fundamental groupoid associated with the cogni-
tive process of interest we can associate source uncertainty H(XGi ) ≡ HGi , where X
is the dual information source of the cognitive phenomenon of interest.

Responses of a cognitive system can now be represented by high probability paths
connecting ‘initial’ multivariate states to ‘final’ configurations, across a great variety
of beginning and end points. This creates a similar variety of groupoid classifications
and associated dual cognitive processes in which the equivalence of two states is
defined by linkages to the same beginning and end states. Thus it becomes possible
to construct a ‘groupoid free energy’ driven by the quality of available metabolic free
energy, represented by the mitochondrial rate H, to be taken as a temperature analog.

The argument-by-abduction from physical theory is that H constitutes a kind of
thermal bath for the processes of biological cognition. Thus we can construct another
Morse Function by writing a pseudo-probability for the information sources XGi

having source uncertainties HGi as

Pr[HGi ] = exp[−HGi /κH)]∑
j exp[−HG j /κH] (9)

where κ is an appropriate dimensionless constant characteristic of the particular sys-
tem. The sum is over all possible subgroupiods of the largest available cognitive
groupoid. Note that compound sources, formed by the (tunable, shifting) union of
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underlying transitive groupoids, being more complex, will have higher free-energy-
density equivalents than those of the base transitive groupoids.

The Morse Function defined for invocation of Pettini’s topological hypothesis or
Landau’s spontaneous symmetry breaking is then a ‘groupoid free energy’ F given by

exp[−F/κH] ≡
∑

j

exp[−HG j /κH] (10)

Spontaneous symmetry breaking arguments are invoked here in terms of the
groupoid associated with the set of dual information sources.

Many other Morse Functions might be constructed, for example simply based on
representations of the underlying cognitive groupoid(s). The resulting qualitative pic-
ture would not be significantly different.

The essential point is that decline in the rate of available mitochondrial free energy
H, or in the ability to actually use that free energy as indexed by κ , can lead to
punctuated decline in the complexity of cognitive process within the entity of interest,
according to this model.

If κH is relatively large—a rich and varied real-time free energy environment—then
there are many possible cognitive responses. If, however, constraints of mitochondrial
aging limit the magnitude of κH, then an essential cognitive system may or will
begin to collapse in a highly punctuated manner to a kind of ground state in which
only limited responses are possible, represented by a simplified cognitive groupoid
structure, recognizably akin to amyloid collapse in the much simpler deterministic-
but-for-error protein coding machineries.

2.4 Distortion as order parameter

As described in the Mathematical Appendix, the Rate Distortion Function (RDF) is
the minimum rate of information transmission necessary to ensure that the average
distortion between message sent and message received, using a particular distortion
measure over a given channel, is less than D ≥ 0. Usually written R(D), it is always a
decreasing convex function of D, a reverse J-shaped curve [3]. For example, a Gaussian
channel under the squared distortion measure and in the presence of noise with zero
mean and variance σ 2, has R(D) = 1/2 log[σ 2/D].

For protein folding in the cell, elaborate regulatory machinery is provided by the
endoplasmic reticulum [36], implying the necessity of some comparison between what
is desired and what is produced. In general, Maturana-like cognitive processes at every
scale and level of organization of the living state must have regulatory systems that
make similar comparisons. What we have argued in the previous two sections can be
restated in terms of the collapse of the RDF with decreasing available metabolic free
energy, or rather, via convexity, as the sudden appearance of a large average distortion
D, as an analog to the usual order parameter in a physical system. That is, in the way
magnetization disappears above a certain critical temperature in a ferromagnet, the
average distortion declines in a punctuated manner in the presence of high enough
rates of available metabolic free energy, driven by the underlying groupoid structure,
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remembering that the simplest groupoid is the disjoint union of groups, including a
set consisting of a single group.

3 Discussion

The unexpected correspondence between unconstrained information theory inequali-
ties and the structure of finite groups appears to foreshadow a spectrum of deeper rela-
tions between the dynamics of information sources and sometimes hidden underlying
biological symmetries. These can be simple groups, as with DBFE error-minimization
biological codes, or subtle ‘tilings’ akin to Arabic decorations—cognitive groupoids.
Wallace [37,38] extends the argument to intrinsically disordered proteins and their
logic gates, via nonrigid molecular symmetries built on semidirect and wreath products
of simpler groups. The satisfactory operation of such gates will then be a symmetry-
constrained punctuated function of available rates of metabolic free energy, although
mathematical description of such intermediate scales is likely to be typically more
difficult than the two relatively simple limits described in this paper.

Indeed, using the methods of Houghton [39] it is possible to define wreath products
of groupoids, leading to a ‘nonrigid theory of cognition’—not mathematically trivial—
that can be extended further via ‘fuzzy’ generalizations likely to better fit biological
complexities [40].

What seems clear is that information and symmetries, of various sorts and sub-
tleties, may have unexpected convolutions and intertwinings, and these, in the context
of the living state, will in turn be driven by the availability of metabolic free energy.
Inability to provide adequate rates of that resource expresses itself in punctuated failure
of central physiological function, recognizably analogous to spontaneous symmetry
breaking in simple physical systems. This, via deterioration of basic cellular mito-
chondrial energy mechanisms, appears to be a critical component in the phenomenon
of aging.

4 Mathematical appendix

4.1 Morse theory

Morse Theory explores relations between analytic behavior of a function—the location
and character of its critical points—and the underlying topology of the manifold on
which the function is defined. We are interested in a number of such functions, for
example information source uncertainty on a parameter space and possible iterations
involving parameter manifolds determining critical behavior. An example might be the
sudden onset of a giant component. These can be reformulated from a Morse Theory
perspective [27].

The basic idea of Morse Theory is to examine an n-dimensional manifold M as
decomposed into level sets of some function f : M → R where R is the set of real
numbers. The a-level set of f is defined as

f −1(a) = {x ∈ M : f (x) = a},
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the set of all points in M with f (x) = a. If M is compact, then the whole manifold
can be decomposed into such slices in a canonical fashion between two limits, defined
by the minimum and maximum of f on M . Let the part of M below a be defined as

Ma = f −1(−∞, a] = {x ∈ M : f (x) ≤ a}.

These sets describe the whole manifold as a varies between the minimum and
maximum of f .

Morse functions are defined as a particular set of smooth functions f : M → R as
follows. Suppose a function f has a critical point xc, so that the derivative d f (xc) =
0, with critical value f (xc). Then, f is a Morse function if its critical points are
nondegenerate in the sense that the Hessian matrix of second derivatives at xc, whose
elements, in terms of local coordinates are

Hi, j = ∂2 f/∂xi∂x j ,

has rank n, which means that it has only nonzero eigenvalues, so that there are no lines
or surfaces of critical points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative eigenvalues of H at xc.
A level set f −1(a) of f is called a critical level if a is a critical value of f , that is,

if there is at least one critical point xc ∈ f −1(a).
Again following [27], the essential results of Morse Theory are:

1. If an interval [a, b] contains no critical values of f , then the topology of f −1[a, v]
does not change for any v ∈ (a, b]. Importantly, the result is valid even if f is not
a Morse function, but only a smooth function.

2. If the interval [a, b] contains critical values, the topology of f −1[a, v] changes in
a manner determined by the properties of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the critical points of f is a discrete
subset of M , i.e., critical points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact, then on a finite interval
[a, b] ⊂ R, there is only a finite number of critical points p of f such that
f (p) ∈ [a, b]. The set of critical values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse functions on M is an open
dense set in the set of real functions of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quantities that are the same for all
the manifolds that have the same topology as M , can be estimated and sometimes
computed exactly once all the critical points of f are known: let the Morse numbers
μi (i = 0, . . . , m) of a function f on M be the number of critical points of f of
index i , (the number of negative eigenvalues of H ). The Euler characteristic of
the complicated manifold M can be expressed as the alternating sum of the Morse
numbers of any Morse function on M ,

χ =
m∑

i=1

(−1)iμi .
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The Euler characteristic reduces, in the case of a simple polyhedron, to

χ = V − E + F

where V, E , and F are the numbers of vertices, edges, and faces in the polyhedron.
7. Another important theorem states that, if the interval [a, b] contains a critical value

of f with a single critical point xc, then the topology of the set Mb defined above
differs from that of Ma in a way which is determined by the index, i , of the critical
point. Then Mb is homeomorphic to the manifold obtained from attaching to Ma

an i-handle, i.e., the direct product of an i-disk and an (m − i)-disk.

Pettini [27] and Matsumoto [7] contain details and further references.

4.2 Groupoids

A groupoid, G, is defined by a base set A upon which some mapping—a morphism—
can be defined. Note that not all possible pairs of states (a j , ak) in the base set A
can be connected by such a morphism. Those that can define the groupoid element,
a morphism g = (a j , ak) having the natural inverse g−1 = (ak, a j ). Given such a
pairing, it is possible to define ‘natural’ end-point maps α(g) = a j , β(g) = ak from
the set of morphisms G into A, and a formally associative product in the groupoid g1g2
provided α(g1g2) = α(g1), β(g1g2) = β(g2), and β(g1) = α(g2). Then, the product
is defined, and associative, (g1g2)g3 = g1(g2g3). In addition, there are natural left
and right identity elements λg, ρg such that λgg = g = gρg .

An orbit of the groupoid G over A is an equivalence class for the relation a j ∼ Gak

if and only if there is a groupoid element g with α(g) = a j and β(g) = ak . A groupoid
is called transitive if it has just one orbit. The transitive groupoids are the building
blocks of groupoids in that there is a natural decomposition of the base space of a
general groupoid into orbits. Over each orbit there is a transitive groupoid, and the
disjoint union of these transitive groupoids is the original groupoid. Conversely, the
disjoint union of groupoids is itself a groupoid.

The isotropy group of a ∈ X consists of those g in G with α(g) = a = β(g).
These groups prove fundamental to classifying groupoids.

If G is any groupoid over A, the map (α, β) : G → A × A is a morphism from
G to the pair groupoid of A. The image of (α, β) is the orbit equivalence relation
∼ G, and the functional kernel is the union of the isotropy groups. If f : X → Y is a
function, then the kernel of f , ker( f ) = [(x1, x2) ∈ X × X : f (x1) = f (x2)] defines
an equivalence relation.

Groupoids may have additional structure. For example, a groupoid G is a topolog-
ical groupoid over a base space X if G and X are topological spaces and α, β and
multiplication are continuous maps.

In essence, a groupoid is a category in which all morphisms have an inverse, here
defined in terms of connection to a base point by a meaningful path of an information
source dual to a cognitive process.

The morphism (α, β) suggests another way of looking at groupoids. A groupoid
over A identifies not only which elements of A are equivalent to one another (iso-
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morphic), but it also parameterizes the different ways (isomorphisms) in which two
elements can be equivalent, i.e., in our context, all possible information sources dual to
some cognitive process. Given the information theoretic characterization of cognition
presented above, this produces a full modular cognitive network in a highly natural
manner.

It is interesting to conjecture that characterization of cognition in terms of groupoids
generalizes in some sense with application of the groupoid version of the Seifert-van
Kampen Theorem [41]. The question is how, when a number of cognitive processes
both operate simultaneously and interact, does the groupoid associated with the joint
information source relate to those of the underlying cognitive processes. The canonical
example might be the global workspace of consciousness [28], but wound healing and
the immune response provide other examples [30]. Each cognitive process X j can be
associated with an individual source uncertainty Hj . Then, by the information theory
chain rule, H [X1, . . .] ≤ H [X1] + · · · as in Eq. (1), presumably leading to some
groupoid version of Eq. (2). The choice of a fixed a0 state as a starting point for all
processes means that they all ‘touch’ at that base point, and this may permit definition
of some appropriate ‘free groupoid’ in the spirit that a topological free group can be
defined if several topological spaces touch at a basepoint. The resulting free group
analog then would characterize the symmetry of the joint uncertainty in terms of the
groupoids of the underlying sources. Details, however, do not appear to be at all simple
(e.g., [42]).

4.3 The rate distortion theorem

Suppose a sequence of signals is generated by a biological information source Y having
output yn = y1, y2, . . .. This is ‘digitized’ in terms of the observed behavior of the
system with which it communicates, for example a sequence of ‘observed behaviors’
bn = b1, b2, . . .. Assume each bn is then deterministically retranslated back into a
reproduction of the original biological signal, bn → ŷn = ŷ1, ŷ2, . . ..

Define a distortion measure d(y, ŷ) comparing the original to the retranslated path.
Many distortion measures are possible. The Hamming distortion is defined simply as
d(y, ŷ) = 1, y �= ŷ, d(y, ŷ) = 0, y = ŷ.

For continuous variates, the squared error distortion measure is just d(y, ŷ) =
(y − ŷ)2.

The distortion between paths yn and ŷn is defined as d(yn, ŷn)≡ 1
n

∑n
j=1 d(y j , ŷ j ).

A remarkable characteristic of the Rate Distortion Theorem is that the basic result
is independent of the exact distortion measure chosen [3].

Suppose that with each path yn and bn-path retranslation into the y-language,
denoted ŷn , there are associated individual, joint, and conditional probability distrib-
utions p(yn), p(ŷn), p(yn, ŷn), p(yn |ŷn).

The average distortion is defined as

D ≡
∑
yn

p(yn)d(yn, ŷn)
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It is possible to define the information transmitted from the Y to the Ŷ process using
the Shannon source uncertainty of the strings:

I (Y, Ŷ ) ≡ H(Y ) − H(Y |Ŷ ) = H(Y ) + H(Ŷ ) − H(Y, Ŷ )

where H(..., ...) is the standard joint, and H(...|...) the conditional, Shannon uncer-
tainties [3].

If there is no uncertainty in Y given the retranslation Ŷ , then no information is lost,
and the systems are in perfect synchrony.

In general, of course, this will not be true.
The rate distortion function R(D) for a source Y with a distortion measure d(y, ŷ)

is defined as

R(D) = min
p(y,ŷ);∑(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D

I (Y, Ŷ )

The minimization is over all conditional distributions p(y|ŷ) for which the joint
distribution p(y, ŷ) = p(y)p(y|ŷ) satisfies the average distortion constraint (i.e.,
average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the minimum necessary rate of
information transmission which ensures the communication between the biological
vesicles does not exceed average distortion D. Thus R(D) defines a minimum nec-
essary channel capacity. Cover and Thomas [3] or Dembo and Zeitouni [43] provide
details. The rate distortion function has been calculated for a number of systems, often
using Lagrange multiplier or Khun-Tucker optimization methods.

R(D) is necessarily a decreasing convex function of D for any reasonable definition
of distortion [3]. That is, R(D) is always a reverse J-shaped curve.

For the standard Gaussian channel having noise with zero mean and variance σ 2,
using the squared distortion measure,

R(D) = 1/2 log[σ 2/D], 0 ≤ D ≤ σ 2

R(D) = 0, D > σ 2

Recall the relation between information source uncertainty and channel capacity
[3]:

H [X ] ≤ C

where H is the uncertainty of the source X and C the channel capacity. Remember
also that

C ≡ max
P(X)

I (X |Y )

where P(X) is chosen so as to maximize the rate of information transmission along a
channel Y .
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